Einführung in die Geodynamik der Lithosphäre

Inhaltsverzeichnis

1 Einführung.- 1.1 Die Idee des Modellierens.- 1.2 Dimension geologischer Probleme.- 1.2.1 Annäherungen bei der Dimensionsreduzierung.- 2 Plattentektonik.- 2.1 Historische Entwicklung.- 2.2 Arbeiten auf der Kugeloberfläche.- 2.2.1 oder ist die Erde doch flach?.- 2.2.2 Geometrie auf der Kugel.- 2.2.3 Kinematik auf der Kugel.- 2.2.4 Dynamik auf der Kugel.- 2.3 Kartenprojektionen.- 2.4 Der Schalenbau der Erde.- 2.4.1 Kruste und Lithosphäre.- 2.4.2 Die Platten.- 2.4.3 Die Plattengrenzen.- 2.4.4 Der Wilson-Zyklus.- 2.5 Übungsaufgaben.- 3 Temperatur und Wärme.- 3.1 Grundlagen der Wärmeleitung.- 3.1.1 Die Wärmeleitungsgleichung.- 3.1.2 Die Laplace-Gleichung.- 3.1.3 Die Fehlerfunktion.- 3.1.4 Thermische Zeitkonstanten.- 3.2 Grundlagen der Wärmeproduktion.- 3.2.1 Radioaktive Wärmeproduktion.- 3.2.2 Mechanische Wärmeproduktion.- 3.2.3 Chemische Wärmeproduktion.- 3.3 Grundlagen der Wärmeadvektion.- 3.3.1 Wärmetransport durch Intrusionen.- 3.3.2 Wärmetransport durch Erosion.- 3.3.3 Wärmetransport durch Fluide.- 3.3.4 Die Pecletzahl.- 3.4 Wärme in der kontinentalen Lithosphäre.- 3.4.1 Stabile Geothermen.- 3.5 Wärme in ozeanischer Lithosphäre.- 3.5.1 Alternde ozeanische Lithosphäre.- 3.5.2 Subduktionszonen.- 3.6 Wärmehaushalt von Intrusionen.- 3.6.1 Einfache Temperaturstufen.- 3.6.2 Eindimensionale Intrusionen.- 3.6.3 Zweidimensionale Intrusionen.- 3.6.4 Andere Beispiele hilfreicher Randbedingungen.- 3.7 Auswahl wichtiger Wärmetransportprobleme.- 3.7.1 Zeitlich periodische Schwankungen.- 3.7.2 Gefaltete Isothermen.- 3.7.3 Isothermen und Topographie der Erdoberfläche.- 3.7.4 Temperaturverteilung um Störungen.- 3.8 Übungsaufgaben.- 4 Form, Höhe und Bewegung.- 4.0.1 Bezugsflächen.- 4.0.2 Die fc-/f1-Fläche.- 4.1 Vertikale Bewegungen in der Kruste.- 4.1.1 Definition von Uplift und Exhumation.- 4.1.2 Kinematische Beschreibung.- 4.2 Isostasie.- 4.2.1 Hydrostatische Isostasie.- 4.2.2 Flexurisostasie.- 4.3 Geomorphologie.- 4.3.1 Tektonisch bedingte Landschaftsbildung.- 4.3.2 Reliefentwicklung durch Erosion und Sedimentation.- 4.3.3 Fraktale Beschreibung.- 4.4 Übungsaufgaben.- 5 Kraft und Rheologie.- 5.1 Spannung und Verformung.- 5.1.1 Der Spannungstensor.- 5.1.2 Deformationsgesetze.- 5.2 Rheologie der Lithosphäre.- 5.2.1 Rheologie der kontinentalen Lithosphäre.- 5.2.2 Rheologie der ozeanischen Lithosphäre.- 5.3 Kräfte an Lithosphärenplatten.- 5.3.1 Übertragungsmechanismen.- 5.3.2 Kräfte an ozeanischen Platten.- 5.3.3 Kräfte an kontinentalen Platten.- 5.4 Übungsaufgaben.- 6 Dynamische Prozesse.- 6.1 Dehnung von Kontinenten.- 6.2 Entstehung von Sedimentationsbecken.- 6.2.1 Absenkungsmechanismen.- 6.2.2 Beckentypen.- 6.2.3 Subsidenzanalyse.- 6.2.4 Einige Modelle der kontinentalen Dehnung.- 6.3 Kollision von Kontinenten.- 6.3.1 Thermische Entwicklung von Kollisionsorogenen.- 6.3.2 Mechanische Beschreibung kollidierender Kontinente.- 6.3.3 Akkretionskeile.- 6.3.4 Einige bemerkenswerte dynamische Prozesse und Probleme.- 6.4 Übungsaufgaben.- 7 P-T-t-D-Kurven.- 7.1 Einführung.- 7.1.1 Was sind nun P-T- und P-T-t-D-Kurven genau?.- 7.2 Grundlagen der Petrologie.- 7.2.1 Thermobarometrie.- 7.2.2 Eingefrorene Gleichgewichte.- 7.2.3 Erwärmungs- und Abkühlraten.- 7.3 Erfassung von P-T-Kurven.- 7.3.1 Qualitative Form von P-T-Kurven.- 7.3.2 Krümmung und Steigung von P-T-Kurven.- 7.4 Interpretation von P-T-t-D-Kurven kontinentaler Orogene.- 7.4.1 Zeitliche Beziehungen zwischen Metamorphose und Verformung.- 7.4.2-Räumliche Beziehungen zwischen Metamorphosegrad und -Zeitpunkt.- 7.5 Übungsaufgaben.- A Mathematische Hilfsmittel.- A.1 Wie liest man Differentialgleichungen?.- A.1.1 Begriffe zu Differentialgleichungen.- A.2 Methode der finiten Differenzen.- A.2.1 Raster und Randbedingungen.- A.2.2 Stabilität und Genauigkeit.- A.2.3 Implizite und explizite Methoden.- A.2.4 Näherung der Transportgleichung.- A.2.5 Handhabung unregelmäßiger Ränder.- A.3 Skalare, Vektoren und Tensoren.- A.4 Fourier-Serien.- A.5 Einige numerische Tricks.- A.5.1 Integrieren von Differentialgleichungen.- A.5.2 Die „Least-squares“-Methode.- A.5.3 Numerische Lösung unlösbarer Gleichungen.- A.6 Übungsaufgaben.- B Wiederholung wichtiger mathematischer Regeln.- C Symbole, Einheiten und wichtige Größen.- D Antworten zu den Übungsaufgaben.- E Hinweise zu weiterführenden Lehrbüchern.

Einführung in die Geodynamik der Lithosphäre

Quantitative Behandlung geowissenschaftlicher Probleme

Buch (Taschenbuch)

49,99 €

inkl. gesetzl. MwSt.

Einführung in die Geodynamik der Lithosphäre

Ebenfalls verfügbar als:

Taschenbuch

Taschenbuch

ab 49,99 €
eBook

eBook

ab 38,66 €

Artikel liefern lassen

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

04.09.2000

Verlag

Springer Berlin

Seitenzahl

406

Maße (L/B/H)

23,5/15,5/2,3 cm

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

04.09.2000

Verlag

Springer Berlin

Seitenzahl

406

Maße (L/B/H)

23,5/15,5/2,3 cm

Gewicht

640 g

Auflage

2000

Sprache

Deutsch

ISBN

978-3-540-67516-7

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kundinnen und Kunden meinen

0.0

0 Bewertungen filtern

Weitere Artikel finden Sie in

  • Einführung in die Geodynamik der Lithosphäre
  • 1 Einführung.- 1.1 Die Idee des Modellierens.- 1.2 Dimension geologischer Probleme.- 1.2.1 Annäherungen bei der Dimensionsreduzierung.- 2 Plattentektonik.- 2.1 Historische Entwicklung.- 2.2 Arbeiten auf der Kugeloberfläche.- 2.2.1 oder ist die Erde doch flach?.- 2.2.2 Geometrie auf der Kugel.- 2.2.3 Kinematik auf der Kugel.- 2.2.4 Dynamik auf der Kugel.- 2.3 Kartenprojektionen.- 2.4 Der Schalenbau der Erde.- 2.4.1 Kruste und Lithosphäre.- 2.4.2 Die Platten.- 2.4.3 Die Plattengrenzen.- 2.4.4 Der Wilson-Zyklus.- 2.5 Übungsaufgaben.- 3 Temperatur und Wärme.- 3.1 Grundlagen der Wärmeleitung.- 3.1.1 Die Wärmeleitungsgleichung.- 3.1.2 Die Laplace-Gleichung.- 3.1.3 Die Fehlerfunktion.- 3.1.4 Thermische Zeitkonstanten.- 3.2 Grundlagen der Wärmeproduktion.- 3.2.1 Radioaktive Wärmeproduktion.- 3.2.2 Mechanische Wärmeproduktion.- 3.2.3 Chemische Wärmeproduktion.- 3.3 Grundlagen der Wärmeadvektion.- 3.3.1 Wärmetransport durch Intrusionen.- 3.3.2 Wärmetransport durch Erosion.- 3.3.3 Wärmetransport durch Fluide.- 3.3.4 Die Pecletzahl.- 3.4 Wärme in der kontinentalen Lithosphäre.- 3.4.1 Stabile Geothermen.- 3.5 Wärme in ozeanischer Lithosphäre.- 3.5.1 Alternde ozeanische Lithosphäre.- 3.5.2 Subduktionszonen.- 3.6 Wärmehaushalt von Intrusionen.- 3.6.1 Einfache Temperaturstufen.- 3.6.2 Eindimensionale Intrusionen.- 3.6.3 Zweidimensionale Intrusionen.- 3.6.4 Andere Beispiele hilfreicher Randbedingungen.- 3.7 Auswahl wichtiger Wärmetransportprobleme.- 3.7.1 Zeitlich periodische Schwankungen.- 3.7.2 Gefaltete Isothermen.- 3.7.3 Isothermen und Topographie der Erdoberfläche.- 3.7.4 Temperaturverteilung um Störungen.- 3.8 Übungsaufgaben.- 4 Form, Höhe und Bewegung.- 4.0.1 Bezugsflächen.- 4.0.2 Die fc-/f1-Fläche.- 4.1 Vertikale Bewegungen in der Kruste.- 4.1.1 Definition von Uplift und Exhumation.- 4.1.2 Kinematische Beschreibung.- 4.2 Isostasie.- 4.2.1 Hydrostatische Isostasie.- 4.2.2 Flexurisostasie.- 4.3 Geomorphologie.- 4.3.1 Tektonisch bedingte Landschaftsbildung.- 4.3.2 Reliefentwicklung durch Erosion und Sedimentation.- 4.3.3 Fraktale Beschreibung.- 4.4 Übungsaufgaben.- 5 Kraft und Rheologie.- 5.1 Spannung und Verformung.- 5.1.1 Der Spannungstensor.- 5.1.2 Deformationsgesetze.- 5.2 Rheologie der Lithosphäre.- 5.2.1 Rheologie der kontinentalen Lithosphäre.- 5.2.2 Rheologie der ozeanischen Lithosphäre.- 5.3 Kräfte an Lithosphärenplatten.- 5.3.1 Übertragungsmechanismen.- 5.3.2 Kräfte an ozeanischen Platten.- 5.3.3 Kräfte an kontinentalen Platten.- 5.4 Übungsaufgaben.- 6 Dynamische Prozesse.- 6.1 Dehnung von Kontinenten.- 6.2 Entstehung von Sedimentationsbecken.- 6.2.1 Absenkungsmechanismen.- 6.2.2 Beckentypen.- 6.2.3 Subsidenzanalyse.- 6.2.4 Einige Modelle der kontinentalen Dehnung.- 6.3 Kollision von Kontinenten.- 6.3.1 Thermische Entwicklung von Kollisionsorogenen.- 6.3.2 Mechanische Beschreibung kollidierender Kontinente.- 6.3.3 Akkretionskeile.- 6.3.4 Einige bemerkenswerte dynamische Prozesse und Probleme.- 6.4 Übungsaufgaben.- 7 P-T-t-D-Kurven.- 7.1 Einführung.- 7.1.1 Was sind nun P-T- und P-T-t-D-Kurven genau?.- 7.2 Grundlagen der Petrologie.- 7.2.1 Thermobarometrie.- 7.2.2 Eingefrorene Gleichgewichte.- 7.2.3 Erwärmungs- und Abkühlraten.- 7.3 Erfassung von P-T-Kurven.- 7.3.1 Qualitative Form von P-T-Kurven.- 7.3.2 Krümmung und Steigung von P-T-Kurven.- 7.4 Interpretation von P-T-t-D-Kurven kontinentaler Orogene.- 7.4.1 Zeitliche Beziehungen zwischen Metamorphose und Verformung.- 7.4.2-Räumliche Beziehungen zwischen Metamorphosegrad und -Zeitpunkt.- 7.5 Übungsaufgaben.- A Mathematische Hilfsmittel.- A.1 Wie liest man Differentialgleichungen?.- A.1.1 Begriffe zu Differentialgleichungen.- A.2 Methode der finiten Differenzen.- A.2.1 Raster und Randbedingungen.- A.2.2 Stabilität und Genauigkeit.- A.2.3 Implizite und explizite Methoden.- A.2.4 Näherung der Transportgleichung.- A.2.5 Handhabung unregelmäßiger Ränder.- A.3 Skalare, Vektoren und Tensoren.- A.4 Fourier-Serien.- A.5 Einige numerische Tricks.- A.5.1 Integrieren von Differentialgleichungen.- A.5.2 Die „Least-squares“-Methode.- A.5.3 Numerische Lösung unlösbarer Gleichungen.- A.6 Übungsaufgaben.- B Wiederholung wichtiger mathematischer Regeln.- C Symbole, Einheiten und wichtige Größen.- D Antworten zu den Übungsaufgaben.- E Hinweise zu weiterführenden Lehrbüchern.